hypermodel.platform.gcp package¶
Submodules¶
hypermodel.platform.gcp.config module¶
-
class
hypermodel.platform.gcp.config.GooglePlatformConfig¶ Bases:
hypermodel.platform.abstract.platform_config.PlatformConfig
hypermodel.platform.gcp.data_lake module¶
-
class
hypermodel.platform.gcp.data_lake.DataLake(config: hypermodel.platform.gcp.config.GooglePlatformConfig)¶ Bases:
hypermodel.platform.abstract.data_lake.DataLakeBase-
download(bucket_path: str, destination_local_path: str, bucket_name: str = None) → bool¶
-
upload(bucket_path: str, local_path: str, bucket_name: str = None) → bool¶
-
hypermodel.platform.gcp.data_warehouse module¶
-
class
hypermodel.platform.gcp.data_warehouse.DataWarehouse(config: hypermodel.platform.gcp.config.GooglePlatformConfig)¶ Bases:
hypermodel.platform.abstract.data_warehouse.DataWarehouseBase-
dataframe_from_query(query: str) → pandas.core.frame.DataFrame¶
-
dataframe_from_table(dataset: str, table: str) → pandas.core.frame.DataFrame¶
-
dry_run(query: str) → List[hypermodel.model.table_schema.SqlColumn]¶
-
import_csv(bucket_path: str, dataset: str, table: str) → bool¶
-
select_into(query: str, output_dataset: str, output_table: str) → bool¶
-
table_schema(dataset: str, table: str) → hypermodel.model.table_schema.SqlTable¶
-
hypermodel.platform.gcp.gcp_base_op module¶
-
class
hypermodel.platform.gcp.gcp_base_op.GcpBaseOp(config: hypermodel.platform.gcp.config.GooglePlatformConfig, pipeline_name: str, op_name: str)¶ Bases:
objectGcpBaseOpdefines the base functionality for a Kubeflow Pipeline Operation providing a convenient wrapper over Kubeflow’s ContainerOp for use within the Google Kubernetes Engine (GKE) on Google Cloud Platform-
bind_env(variable_name: str, value: str)¶ Create an environment variable for the container with the given value
Parameters: - variable_name (str) – The name of the variable in the container
- value (str) – The value to bind to the variable
Returns: A reference to the current GcpBaseOp (for chaining)
-
bind_gcp_auth(gcp_auth_secret: str)¶ Bind the
gcp_auth_secretthat contains the Service Account that this container should use to authenticate and authorise itself.Parameters: gcp_auth_secret (str) – The name of the secret containing the service account this container should use Returns: A reference to the current GcpBaseOp (for chaining)
-
bind_output_artifact_path(name: str, path: str)¶ Add an artifact to the Kubeflow Pipeline Operation using the
nameprovided with the content from thepathprovidedParameters: - name (str) – The name of the output artifact
- path (str) – The path to find the content for the artifact
Returns: A reference to the current GcpBaseOp (for chaining)
-
bind_output_file_path(name, path)¶ Add an output file to the Kubeflow Pipeline Operation using the
nameprovided with the content from thepathprovidedParameters: - name (str) – The name of the output file
- path (str) – The path to find the content for the file
Returns: A reference to the current GcpBaseOp (for chaining)
-
bind_secret(secret_name: str, mount_path: str)¶ Bind a secret with the name
secret_namefrom Kubernetes (in the same namespace as the container) to the specifiedmount_pathParameters: - secret_name (str) – The name of the secret to mount
- mount_path (str) – The path to mount the secret to
Returns: A reference to the current GcpBaseOp (for chaining)
-
get(key: str)¶ Get the value of a variable bound to this Operation, returning None if the
keyis not found.Parameters: key (str) – The key to get the value of - Returns
- The value of the given
key, or None if the key is not found in currently bound values.
-
op(overrides={})¶ Generate a ContainerOp object from all the configuration stored as a part of this Op.
Parameters: overrides (Dict[str,str]) – Override the bound variables with these values Returns: ContainerOp using settins from this op
-
with_container(container_image_url: str, container_command: str, container_args: List[str])¶ Set information about which container to use, and the command in that container to execute as a part of this job.
Parameters: - container_image_url (str) – The url and tags for where we can find the container
- container_command (str) – The command to execute
- container_args (List[str]) – The arguments to pass the executable
-
hypermodel.platform.gcp.services module¶
-
class
hypermodel.platform.gcp.services.GooglePlatformServices¶ Bases:
hypermodel.platform.abstract.services.PlatformServicesBaseServices related to our Google Platform / Gitlab technology stack, including:
-
config¶ An object containing configuration information
Type: GooglePlatformConfig
-
warehouse¶ A reference to DataWarehouse functionality implemented through BigQuery
Type: DataWarehouse
-
config
-
git¶
-
lake
-
warehouse
-